

# Analyzing structural and thermal performance during design

### **Benefits**

- Obtain earlier feedback on performance with a design integrated simulation process
- Evaluate more alternatives with faster iterations between design and analysis
- Expand CAE to more users with easyto-use, geometry-based simulation
- Update analysis results rapidly through CAD-associative simulation models
- Improve designs with embedded optimization engine

### Summary

NX™ Design Simulation software delivers design-integrated structural and thermal simulation tools that help design engineers compare design alternatives and optimize performance characteristics of products from the earliest stages of the design process. Complementary and scalable to the NX Advanced Simulation applications suite, these tools are tightly linked with NX 3D design geometry to accelerate simulation modeling, analysis and results evaluation, so that functional performance simulation results can directly influence design. The result is a highly iterative and predictive engineering process that delivers innovative designs, higher quality products and reduced time-to-market.

## **Basic functionality**

NX Design Simulation enables design engineers to understand, evaluate and optimize the structural, thermal and vibration behavior of parts and assemblies. NX Design Simulation includes the integrated NX Nastran® finite element solver, the same solver used by highend analysts, for quick turnaround

linear structural and thermal evaluations as well as sizing and parametric shape optimization.

Design engineers can quickly perform multiple "what-if" simulations of a product's structural and thermal performance to choose the most promising and innovative conceptual design alternatives. Geometry-based parametric modeling and automated optimization tools facilitate detailed understanding of a product's performance characteristics and definition of an "optimal" digital design prototype earlier in the product development process.

### Optimization to aid design

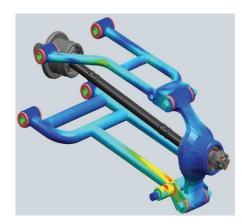
Also integrated into NX Design Simulation are automated sizing and parametric shape optimization and fault tolerant adaptive meshing technologies. Using the embedded optimization engine, NX Design Simulation is able to automatically predict the best geometric and mechanical parameters for a component or assembly, based on engineering performance simulation results. Optimization goals, engineering constraints and model variables are defined by the user through a simple process guided by NX. Direct optimization and sensitivity studies then provide the maximum amount of guidance for the engineer while fault-tolerant meshing provides a quantitative degree of confidence.

# **NX Design Simulation**

#### Ease of use

Key ease-of-use features in NX Design Simulation include a simulation navigator that guides new users and increases

the efficiency of the more experienced by providing a visual reference to the analysis objects created in the model. Intelligent meshing algorithms incorporate industry best practices and apply knowledge based approaches to successfully mesh complex geometry, reducing element count while increasing element quality. Built-in 'wizards' facilitate vibration and/or stress analyses.


### Communicating results

Validation requires full and complete documentation, a natural process with NX Design Simulation. Report content is controlled and maintained through fully customizable templates ensuring consistency and quality. While much report content can be created automatically, additional content can be added "on the fly," providing the vital flexibility needed to ensure that reports add value to your business and support your collaboration, archival and regulation requirements.



### Simulation solutions

Supported solution types include linear statics, normal modes, linear buckling, linear contact, steady-state heat transfer and combined thermo-structural; temperature dependent materials are also supported. While the basis issue of whether a product will fail is critically important, in many instances, engineers need to address other questions as well. In cases where design engineers need to predict when a design might fail, the NX Durability Wizard add-on product is available which guides design engineers through a basic durability analysis.



| NX Design Simulation   |                                                |                                                 |  |
|------------------------|------------------------------------------------|-------------------------------------------------|--|
| Model<br>preparation   | Geometry construction – access to all NX tools | Access to model feature parameters              |  |
|                        | Model simplification tools                     | Automated mesh mating                           |  |
|                        | Model feature suppression                      | conditions                                      |  |
|                        | Automated model idealization                   | Analysis model to design geometry associativity |  |
|                        | Geometric feature removal                      | Units managers                                  |  |
|                        | NX Open support                                | Knowledge Fusion support                        |  |
| Material<br>properties | Isotropic                                      | Temperature dependent                           |  |
|                        | Orthotropic                                    | Material database                               |  |
|                        | Anisotropic                                    |                                                 |  |

| NY Dosign                          | Simulation                    |                                  |
|------------------------------------|-------------------------------|----------------------------------|
| NX Design S<br>Load types          | Force                         | Hydrostatic                      |
|                                    | Moment                        | Surface-to-surface contact       |
|                                    | Pressure                      | definition                       |
|                                    | Centrifugal and gravitational | Heat flux                        |
|                                    | Bearing                       | Heat generation                  |
|                                    | Temperature                   | Radiation                        |
|                                    | Torque                        |                                  |
| Boundary<br>conditions             | Rotations and translations    | Slider                           |
|                                    | Enforced displacements        | Roller                           |
|                                    | Simply supported              | Symmetric and anti-symmetric     |
|                                    | Pinned                        | Thermal constraint               |
|                                    | Cylindrical                   | Convection                       |
| Meshers<br>and<br>element<br>types | Tetra (free)                  | Automatic geometry abstraction   |
|                                    | 3D contact                    | Mesh mating conditions           |
|                                    | Edit mesh                     | Mesh point                       |
|                                    |                               |                                  |
| Integrated<br>solver               | NX Nastran                    |                                  |
| Supported                          | Linear static                 | Assembly with linear contact     |
| solution<br>types                  | Normal modes                  | Sensitivity studies              |
| - <b>5</b>   P - 2                 | Linear buckling               | Geometry optimization            |
|                                    | Steady-state heat transfer    | Adaptive meshing and analysis    |
| Viewing<br>results                 | Fringe plots                  | Results at node/element          |
|                                    | Cutting planes                | Error estimate plot              |
|                                    | Contour lines                 | Automatic report writing         |
|                                    | Iso surfaces                  | Multiple viewports               |
|                                    | Animation                     | Templates                        |
|                                    | Deformed shape                | Advanced lighting                |
|                                    | Result comparison             | Automatic min/max tags           |
|                                    | Nodal displacements           | Dataset selection from navigator |
|                                    | Element stress                | Results import                   |
|                                    | Nodal stress                  | Fly through model with results   |
|                                    | Strain energy                 | JT2Go lightweight results export |
|                                    | Strain energy density         | Programmable CAE objects         |
|                                    | Annotations                   | Results measures                 |

### **Product availability**

NX Design Simulation is an add-on module in the suite of NX CAE applications available within the NX integrated digital product development portfolio. It requires a core seat of either NX Gateway or NX Design as a prerequisite. NX Design Simulation is available on 32 and 64-bit Windows and also on 64-bit Linux systems.

Siemens PLM Software www.siemens.com/plm

Americas +1 314 264 8499 Europe +44 (0) 1276 413200 Asia-Pacific +852 2230 3308

© 2016 Siemens Product Lifecycle Management Software Inc. Siemens and the Siemens logo are registered trademarks of Siemens AG. D-Cubed, Femap, Fibersim, Geolus, GO PLM, I-deas, JT, NX, Parasolid, Solid Edge, Syncrofit, Teamcenter and Tecnomatix are trademarks or registered trademarks of Siemens Product Lifecycle Management Software Inc. or its subsidiaries in the United States and in other countries. Nastran is a registered trademark of the National Aeronautics and Space Administration. All other logos, trademarks, registered trademarks or service marks belong to their respective holders. 7936-A6 12/16 H

GEOMETRIC SOLUTIONS



844-GEO-SUPT support@geoplm.com geoplm.com